Geometric Expansion for Local Feature Analysis and Matching

نویسندگان

  • Erez Farhan
  • Rami R. Hagege
چکیده

We present a novel method for locating large amounts of local matches between images, with highly accurate localization. Point matching is one of the most fundamental tasks in computer vision, being used extensively in applications such as object detection, object tracking and structure from motion. The major challenge in point matching is to preserve large numbers of accurate matches between corresponding scene locations under different geometric and radiometric conditions, while keeping the number of false matches small. Recent publications have shown that applying the affine transformation model on local regions is a particularly suitable approach for point matching. Yet, affine invariant methods are not used extensively for two reasons First, because these methods are computationally demanding and second is that the derived affine estimations are with limited accuracy. In this work, we propose a novel method of region expansion that enhances region matches detected by any state-of-the-art method. The method is based on accurate estimation of affine transformations, which is used to predict matching locations beyond initially detected matches. We utilize the improved estimations of affine transformations in order to locally verify tentative matches in an efficient way. We systematically reject false matches, while improving the localization of correct matches that are usually rejected by state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

Matching of Polygon Objects by Optimizing Geometric Criteria

Despite the semantic criteria, geometric criteria have different performances on polygon feature matching in different vector datasets. By using these criteria for measuring the similarity of two polygons in all matchings, the same results would not have been obtained. To achieve the best matching results, the determination of optimal geometric criteria for each dataset is considered necessary....

متن کامل

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

Accurate off-line query expansion for large-scale mobile visual search

Mobile visual search is a new class of applications that use images taken by camera phone to initiate search queries. It is a very challenging task mainly because of image affine transformations caused by viewpoints changes, and motion blur due to hand tremble. These problems are unavoidable in mobile visual search and often result in low recall. Query expansion is an effective strategy for rec...

متن کامل

Robust Image Matching using Statistical Modeling and Geometric Similarity

We propose a robust image matching method using statistical modeling and clustering of geometric similarity between matching-pairs. Local feature matching is an uncertain process which may provide incorrect matches due to some causes that include among other factors, the uncertainly in feature location. Since the statistical modeling of the Log Distance Ratio (LDR) for outliers are significantl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015